27,320 research outputs found

    Variations on Slavnov's scalar product

    Get PDF
    We consider the rational six-vertex model on an L-by-L lattice with domain wall boundary conditions and restrict N parallel-line rapidities, N < L/2, to satisfy length-L XXX spin-1/2 chain Bethe equations. We show that the partition function is an (L-2N)-parameter extension of Slavnov's scalar product of a Bethe eigenstate and a generic state, with N magnons each, on a length-L XXX spin-1/2 chain. Decoupling the extra parameters, we obtain a third determinant expression for the scalar product, where the first is due to Slavnov [1], and the second is due to Kostov and Matsuo [2]. We show that the new determinant is a discrete KP tau-function in the inhomogeneities, and consequently that tree-level N = 4 SYM structure constants that are known to be determinants, remain determinants at 1-loop level.Comment: 17 page

    Hall-Littlewood plane partitions and KP

    Full text link
    MacMahon's classic generating function of random plane partitions, which is related to Schur polynomials, was recently extended by Vuletic to a generating function of weighted plane partitions that is related to Hall-Littlewood polynomials, S(t), and further to one related to Macdonald polynomials, S(t,q). Using Jing's 1-parameter deformation of charged free fermions, we obtain a Fock space derivation of the Hall-Littlewood extension. Confining the plane partitions to a finite s-by-s square base, we show that the resulting generating function, S_{s-by-s}(t), is an evaluation of a tau-function of KP.Comment: 17 pages, minor changes, added a subsection and comments to clarify content, no changes made to conclusions, version to appear in IMR

    On the Possibility of Quasi Small-World Nanomaterials

    Full text link
    The possibility of materials that are governed by a fixed point related to small world networks is discussed. In particular, large-scale Monte Carlo simulations are performed on Ising ferromagnetic models on two different small-world networks generated from a one-dimensional spin chain. One has the small-world bond strengths independent of the length, and exhibits a finite-temperature phase transition. The other has small-world bonds built from atoms, and although there is no finite-temperature phase transition the system shows a slow power-law change of the effective critical temperature of a finite system as a function of the system size. An outline of a possible synthesis route for quasi small-world nanomaterials is presented.Comment: 13 pages, 9 figures, submitted to Brazilian Journal of Physics, conference proceedings for III Brazilian Meeting on Simulational Physics (2003

    The shape of the urine stream — from biophysics to diagnostics

    Get PDF
    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation

    Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures

    Full text link
    We prove two identities of Hall-Littlewood polynomials, which appeared recently in a paper by two of the authors. We also conjecture, and in some cases prove, new identities which relate infinite sums of symmetric polynomials and partition functions associated with symmetry classes of alternating sign matrices. These identities generalize those already found in our earlier paper, via the introduction of additional parameters. The left hand side of each of our identities is a simple refinement of a relevant Cauchy or Littlewood identity. The right hand side of each identity is (one of the two factors present in) the partition function of the six-vertex model on a relevant domain.Comment: 34 pages, 14 figure

    Beam profiles measured with thermoluminescent dosimeters

    Get PDF
    Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined
    • …
    corecore